Generalized Zalcman Conjecture for Starlike and Typically Real Functions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a conjecture for trigonometric sums and starlike functions, II

We prove the case ρ = 4 of the following conjecture of Koumandos and Ruscheweyh: let s μ n (z) := ∑n k=0 (μ)k k! z k , and for ρ ∈ (0, 1] let μ(ρ) be the unique solution of ∫ (ρ+1)π 0 sin(t − ρπ)tμ−1dt = 0 in (0, 1]. Then we have | arg[(1− z)ρs n (z)]| ≤ ρπ/2 for 0 < μ ≤ μ(ρ), n ∈ N and z in the unit disk of C and μ(ρ) is the largest number with this property. For the proof of this other new re...

متن کامل

Typically Real Harmonic Functions

We consider a class T O H of typically real harmonic functions on the unit disk that contains the class of normalized analytic and typically real functions. We also obtain some partial results about the region of univalence for this class.

متن کامل

On a conjecture for trigonometric sums and starlike functions

We pose and discuss the following conjecture: let s n(z) := ∑n k=0 ( )k k! zk , and for ∈ (0, 1] let ∗( ) be the unique solution ∈ (0, 1] of ∫ ( +1) 0 sin (t − ) t −1 dt = 0. Then for 0< ∗( ) and n ∈ N we have | arg[(1− z) s n(z)]| /2, |z|< 1. We prove this for = 1 2 , and in a somewhat weaker form, for = 3 4 . Far reaching extensions of our conjectures and results to starlike functions of orde...

متن کامل

Initial coefficients of starlike functions with real coefficients

The sharp bounds for the third and fourth coefficients of Ma-Minda starlike functions having fixed second coefficient are determined. These results are proved by using certain constraint coefficient problem for functions with positive real part whose coefficients are real and the first coefficient is kept fixed. Analogous results are obtained for a general class of close-to-convex functions

متن کامل

Typically-real Functions with Assigned Zeros

is said to be typically-real of order p, if in (1.1) the coefficients bn are all real and if either (I) f(z) is regular in |a| =S1 and 3/(ei9) changes sign 2p times as z = eie traverses the boundary of the unit circle, or (II) f(z) is regular in | z\ < 1 and if there is a p < 1 such that for each r in p<r<l, $f(reie) changes sign 2p times as z = reie traverses the circle \z\ =r. This set of fun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1999

ISSN: 0022-247X

DOI: 10.1006/jmaa.1999.6378